Republicii Street, No. 9, TM, Romania +40-256-201279
Tech

Originated in Germany, Industry 4.0 translates as “a holistic automation, business information, and manufacturing execution architecture to improve industry with the integration of all aspects of production and commerce across company boundaries for greater efficiency”, according to Automation ISA.

From this starting point, the source article delves into the history of Industry 4.0 initiative. The Industry 4.0 initiative is part of a 10-point high-tech German strategic plan, created in 2006 and continued in 2010 by introducing the High-Tech Strategy 2020. Science and industry need to cooperate, in order to turn knowledge into skills.

Creating networks that incorporate the entire manufacturing process and convert factories into smart environments involves linkages. Linkages such as “smart machines, warehousing systems, and production facilities that feature end-to-end integration, including inbound logistic, production, marketing, outbound logistics, and service”.

Real-time data, a key element in the Industry 4.0 chain of operations

Real-time information enables strong decisions, based on insights. When it comes to production, it enables a superior reactivity and responsiveness in what production chain materials and operations are concerned.

Also, Industry 4.0 is based on asynchronous manufacturing.  This requires that the components in the production flow are able to use “auto identification technology to inform each machine and operator what needs to be done to produce the customized end product at each step of the production process.”

Based on real-time field data, the machines can be rapidly configured so they would adapt to customer specifications and other commands inherent to the production operations.

The collected data also serves as prime material for a range of analytics. These provide a bonus post real-time advantage to those in charge. By analyzing the data, such systems provide recommendations on improving performance and productivity.

Using embedded intelligence at all levels, the advanced cyber-physical systems (CPS) save “significant cost, providing greater flexibility and improved reliability.”

What binds together this new, developing industrial landscape is a series of software solutions that allow for the data to be collected and processed. Furthermore, the insights become recommendations. The decisions then turn into commands that go back into the cycle, driving modified, optimized operations.

 

Standards emerge, as well as a worldwide agenda

With separate, but similar Industry 4.0 agendas in countries such as Germany, China, Japan and/or others, a sum of specific standards emerge. These standards require harmonization, if they are going to work seamlessly at a global level, regardless of the physical area where the industrial processes involved take place.

Future automation systems must adopt open source multivendor interoperability software application and communication standards similar to those that exist for computers, the Internet, and cell phones. Industry 4.0 demonstrations acknowledge this by leveraging existing standards, including the ISA-88 batch standards, ISA95 enterprise-control systems integration standards, OPC UA, IEC 6-1131-3, and PLCopen.

Process automation is at the core of this plan. It becomes more and more present with each industry entity that joins this trend. The Industry 4.0 vision of the future factory joins together advanced technology hardware and brilliant software solutions, for a flawless functionality.

We are getting there with each software solution. Producers can unload more and more of their operations onto the digital, be it monitoring operations, management, coordination or others.

Call us for software solutions partnerships – we build the software you need for going one step further into the Industry 4.0!

0

Tech

5G links to Smart Manufacturing, which links to Industry 4.0. In fact the last two may be seen as one and the same thing.


Smart manufacturing and the Smart Factory is a broad category of manufacturing with the goal of optimizing the manufacturing process. Smart manufacturing is the process that employs computer controls, modeling, big data and other automation to improve manufacturing efficiencies.

Source


Although some big players are still reticent, important 5G promoters continue to develop this technology. Moreover, hands-on demos illustrate its key qualities. Continuous process monitoring is one of the areas 5G should bring shorter lead-times, while returning higher yield.

We took a look at one article occasioned by this year’s Industrial Manufacturing Show held in Chicago:


Industry 4.0 will rely on increasingly fast, secure, and often wireless, data transfers to optimize operations, increase automation and mitigate risk in manufacturing environments.

 

Potential 5G early adopters


Various sensitive industries that would highly benefit from a reduction in the production errors are potential early adopters.


The 5G article mentions the aeronautical industry and the manufacturing industry – when focusing on the production of sophisticate components.


The scope here is to make the collecting and processing of the sensor data, as well as the action of cutting control, take place in under one millisecond.


Research has pointed out that for this type of demands, “5G and cellular wireless can deliver, with its ultra-low latency and high reliability”.

 

What does 5G mean for industrial production?


As mentioned above, no network solutions before 5G have been able to provide instant monitoring and adjustment during production.


An extra benefit is that by storing production and sensor data for each manufactured product, the 5G supported manufacturing enables real-time digital twins. Whenever needed, this data is available and ready to serve in research, analysis, and risk assessment, or to answer other possible demands.

 

While waiting for 5G future developments


As our colleague Ionel Petrut, Project Manager at Lasting Software, mentioned in his presentation held this year for the SACI conference (IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, SACI 2018, Timisoara, Romania):

 

The Internet of Things had a very big impact on the technology as we know today. One important aspect, not yet standardized, is the way in which objects connect to the network to function together. In particular, in the medical field, the Internet of Things faces a high number of technical limitations, most of them related to the electromagnetic emissions.

Until the 5G network will create the infrastructure for sensors to directly connect to the Internet, the connection through Bluetooth Low Energy remains the most suitable solution for Internet of Things connectivity.

 

We prove our software engineering skills and professional commitment by mastering the current technologies involved in the projects we are part of. But we also keep an eye on the latest developments, dreaming of the bold new world of fully deployed IoT capabilities.

 

Contact us for consultancy and partnerships – the future awaits!

 

0